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Evolutionary search for superhard materials: Methodology and applications to forms of
carbon and TiO2
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We have developed a method for prediction of the hardest crystal structures in a given chemical system. It is
based on the evolutionary algorithm USPEX (Universal Structure Prediction: Evolutionary Xtallography) and
electronegativity-based hardness model that we have augmented with bond-valence model and graph theory.
These extensions enable correct description of the hardness of layered, molecular, and low-symmetry crystal
structures. Applying this method to C and TiO2, we have (i) obtained a number of low-energy carbon structures
with hardness slightly lower than diamond and (ii) proved that TiO2 in any of its possible polymorphs cannot be
the hardest oxide, its hardness being below 17 GPa.
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Hardness is an important property that determines many
of the technological applications of materials. The ability to
predict the hardest phase of a crystal, given its stoichiometry,
will enable a systematic search for novel hard materials and
allow one to appraise controversial experimental results. The
problem at hand is, in principle, similar to the search for the
most stable phase at given conditions, an area where many
interesting results were achieved recently (for an overview,
see Ref. 1). Both problems require finding a global minimum
on some surface in multidimensional space: hardness and free
energy, respectively, as a function of the atomic positions and
lattice vectors. However, computing the hardness of a given
crystal structure is a difficult task. Only recently was significant
progress achieved in formulating models that are physically
meaningful and sufficiently accurate for several classes of
compounds (see Ref. 2–5). Building up on these developments,
we present an evolutionary algorithm that searches for the
hardest possible structure of a given material. It involves the
concept of hybrid global optimization, where global optimiza-
tion with respect to the hardness is conducted in the space of
local minima of the (free) energy. This algorithm opens up
a new way of materials design and discovery, as exactly the
same approach can be used for optimizing other properties.

Our approach is based on the evolutionary algorithm
USPEX,6–8 but in this study the fitness function was chosen
to be hardness instead of the free energy. In this approach,
a set of candidate solutions (population) evolves, driven by
selection and modified by certain rules (variation operators).7

In our case, a candidate solution is a locally optimized structure
described by atomic positions and unit cell vectors. Local
optimization (i.e. structure relaxation) should be done with
respect to the energy, rather than hardness, to ensure that the
structure is chemically realistic. Selection process eliminates
bad candidates (the quality is determined by the value of the
fitness function.

For an overview of analytical models of hardness based
on crystal structure, see Ref. 5 and 9. Here, we build up on
the model of Li et al.,4 which computes the hardness based
on the electronegativities and covalent radii of the constituent
atoms, and the bond lengths in the structure. Like most of the
other models,2,3 it gives good results for simple high-symmetry
structures. For low-symmetry and/or anisotropic structures,

and in particular for molecular and layered structures, the
results are much less satisfactory. This poses a serious problem
for global optimization because the majority of structures
produced during the evolutionary search are rather complex
and have low symmetry. For such structures, also the concept
of well-defined integer coordination number, as used in Ref. 4,
is often inadequate. As we show, these deficiencies can be
remedied.

We have generalized the approach of Li et al. so as to
correct the above mentioned pathologies while reproducing
the results of the original model4 for good cases. Let us
denote by n the number of different bond types in the unit
cell, and we label these with the index k = [1, . . . , n].
The model4 computes electronegativities of each ith atom as
χ = 0.481ni/Ri , where ni and Ri are the number of
valence electrons and univalent covalent radius of this atom,
respectively. To take into account the dependence of the
electronegativity on the environment, and deviations of actual
bond lengths Rk from the sum of covalent radii, we correct the
electronegativites of atoms i and j participating in the bond k

χk
i = 0.481

ni

Ri + �k/2
, χk

j = 0.481
nj

Rj + �k/2
(1)

by equally distributing �k = Rk − Ri − Rj (in Å) between
the bonded atoms. This introduces explicit dependence of the
electronegativity and hardness on bond lengths. The effec-
tive coordination number that describes the atomic valence
involved in each bond is defined as CNk

i = vi/s
k
i , where vi is

the valence of atom i (in general not equal to ni) and sk
i is a

bond valence that can be calculated using Brown’s model:10

sk
i = vi exp(−�k/0.37)∑

k′
exp(−�k′/0.37)

.

Here, the sum goes over all bonds k′ in which atom i
participates. This definition involves renormalization to satisfy
exactly the sum rule10 ∑

k′ s
k′
i = vi . Note that CNk

i is a
continuous function of structure and can take noninteger values
(unlike classical coordination numbers), which is very useful
for global optimization. Now we substitute these generalized
formulas into the original formulas4 for the hardness. Average
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electron-holding energy of the bond and its ionicity indicator
are defined as in the original work of Li et al. (Ref. 4)

Xk =
√√√√ χk

i χk
j

CNk
i CNk

j

, fk =
∣∣χk

i − χk
j

∣∣
4
√

χk
i χk

j

, (2)

which are then substituted into the formula4 for the Knoop
hardness (in GPa):

H = 423.8

V
n

(
n∏

k=1

NkXke
−2.7fk

)1/n

− 3.4, (3)

where V is the volume of the unit cell and Nk is the number
of bonds of the type k in the unit cell. Coefficients 423.8, 2.7,
and −3.4 were obtained in Ref. 4 by fitting to experimental
data for hard materials.

From Eq. (3), one can see that the hardness (as a geometric
average) is strongly affected by the weakest included bonds.
The case of graphite is very instructive. Using the standard
coordination number (three) includes only the strong covalent
bonds in Eq. (3). Their lengths are 1.42 Å and, in the original
model, their electron-holding energy is equal to X = 0.844.
With the unit cell volume V = 35.28 Å3 one obtains an
unrealistically high H = 57 GPa. The original model4 takes
into account the number and strength of the bonds in the
structure, but not the structural topology. Yet, the real hardness
of graphite is determined by the weak van der Waals bonds
between the layers of the structure. Thus, by hardness-defining
(or structure-forming) bonds, we mean not only the strongest
chemical bonds, but also a set of bonds necessary to maintain
three-dimensionality of the crystal structure. These bonds need
to be included in Eq. (3), and we discovered an automatic way
to find them. Let us describe the crystal as a graph where
atoms are vertices, and hardness-defining bonds are edges.
The challenge for the algorithm is to determine edges knowing
only the geometric arrangement of atoms and their chemical
identities. We do this by gradually adding to the graph those
weak bond groups that decrease the number of its connected
components. In the case of graphite, strong sp2 bonds within
the layer and the closest bonds between the layers are deter-
mined as hardness-defined ones. Weak bonds have the length of
3.35 Å, their electron-holding energy is X = 0.002. Geometric
average in Eq. (3) results in a hardness H = 0.17 GPa, in
agreement with our everyday experience that graphite is an
ultrasoft solid and a lubricant.

The complete connectivity of the graph is a sufficient but
not necessary condition for determining whether all hardness-
defining bonds are taken into account. There is one important
general case where a disconnected graph will still represent a
3D-bonded structure. A simple illustration of this phenomenon
is a 3D chess board, where all white and black cubes build
their own connected subgraphs and these subgraphs are not
connected with each other. Amazingly, such an exotic structure
is known in nature: it is the structure of the 3D catenane,
cuprite (Cu2O). Such nonconnected but intersecting graphs
can be detected using multicolor graph theory, which we have
implemented.

With these extensions (bond valence model and graph
theory), the model of Li et al.4 shows excellent performance
without the need for changing the final formulas or refitting

TABLE I. Hardness of different materials (in GPa).

Material13 Model4 Present work Experiment14

Diamond 91.2 89.7 9015

Graphite 57.4 0.17 0.1416

Rutile, TiO2 12.9 14.0 8–1117

TiO2 Cotunnite 16.6 15.3 controversial
β-Si3N4 23.4 23.4 2118

Stishovite, SiO2 31.8 33.8 3219

the coefficients, as illustrated in Table I. It is worth noting
that our values of the hardness correspond to experimental
microhardness (hardness in the limit of nonplastic defor-
mations) measured by the Knoop hardness test. It may be
surprising that a model based on the ideal crystal structure
so closely reproduces the experimental microhardness, which
significantly depends on defects (especially dislocations).11

Our understanding is that softening due to dislocations is
factored in the fitted coefficients in Eq. (3). This model
takes into account the most important chemical effects related
to the strength of covalent bonding, degree of ionicity and
directionality, and topology of the crystal structure. It seems
to be applicable even to very complex cases. For example,
hardnesses obtained for different phases of boron are 41.0 GPa
for α-B12, 38.0 GPa for β-B106, and 42.5 GPa for γ -B28, which
compare quite well with the experimental Vickers hardness
values of 42, 45, and 50 GPa, respectively (Ref. 12 and
references therein).

This model of hardness, coupled with a global optimization
algorithm for crystal structure prediction, can be used for
predicting the hardest structure in a given chemical system.
We applied the method to two particularly interesting systems,
carbon and TiO2. These cases address major problems in the
field of superhard materials. In particular, does a material
harder than diamond exist? Other carbon allotropes (e.g. see
Ref. 20) are prime suspects here. The search for the hardest
oxide is another important problem: while diamond burns in
the oxygen atmosphere at high temperatures, oxides can be

FIG. 1. Example of evolutionary hardness optimization: an ab
initio run for TiO2.
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TABLE II. Some of the superhard allotropes of carbon found
by USPEX. Novel structures are described by symmetry group and
number of atoms in the unit cell. Hardness is measured in GPa, volume
in Å3/atom, enthalpy in eV/atom relative diamond.

Structure H Enthalpy V

Diamond 89.7 0.000 5.685
Lonsdaleite 89.1 0.026 5.696
M-carbon (C2/m)6,29 84.3 0.163 5.969
bct4-carbon (I4/mmm)30,31 84.0 0.198 6.003
Cmcm–16 83.5 0.282 6.036
P2/m–8 83.4 0.166 5.979
I212121–12 82.9 0.784 5.911
Fmmm–24 82.2 0.322 6.128
Cmcm–12 82.0 0.224 6.157
P652234 81.3 0.111 6.203

inert to oxygen, which could make them important for man-
ufacturing novel types of cutting and abrasive tools. Previous
proposals included stishovite,19 TiO2-cotunnite,21 and B6O.22

While boron suboxide B6O is the hardest known oxide (H =
45 GPa22), its thermal stability in the oxygen atmosphere is
rather poor.23 Other ultrahard oxides are stishovite with H = 32
GPa,19 seifertite (high-pressure polymorph of SiO2, predicted5

to be slightly harder than stishovite), and TiO2-cotunnite with
the reported, but controversial, hardnesses H = 38 GPa.21

Here, we investigate whether TiO2, in any of its forms, can be
as hard as reported.

In our structure searches, hardness was evaluated for struc-
tures after they were relaxed. Relaxation was done using the
generalized gradient approximation24 as implemented in the
VASP code25 for C and TiO2, and in additional searches using
the GULP code26 and a Buckingham potential27 for TiO2. All ab
initio calculations used plane-wave basis sets and Monkhorst-
Pack meshes for Brillouin zone, sufficient for excellent con-
vergence in the total energy and stress tensor. For each system,
we explored different numbers of formula units in the unit cell
(up to 24 atoms/cell). A typical result is shown in Fig. 1.

For carbon, the hardest structure found is diamond.
Lonsdaleite and polytypes intermediate between diamond
and lonsdaleite also emerged in our runs, but they are
slightly softer. Our searches at various system sizes (in total,
we sampled 9,500 structures) produced a large number of
superhard allotropes with hardnesses approaching that of
diamond, see Table II and Fig. 2. Parameters of these structures
can be found in the supplementary material.28 Synthesis
and practical applications of some of these structures may
be possible. Indeed, there are indications that the C2/m or
I/4mmm structure has been obtained on cold compression of

FIG. 3. (Color online) Hardest low-energy structure of TiO2

found by USPEX. Its enthalpy is 0.1 eV/atom above the ground
state, while the density is 11% higher.

graphite29,30 (recently, the C2/m structure got additional
theoretical support32). We also note that while diamond is
the hardest possible phase of carbon, it is not the densest
one. Several significantly denser (and only marginally softer)
metastable structures were proposed in Ref. 33.

Our numerously repeated simulations of TiO2 consistently
indicated that the reported hardness of 38 GPa21 is extremely
unlikely to be correct. The highest possible hardness for a
TiO2 polymorph is 16.5 GPa (from ab initio calculations) or
15 GPa (classical force field). The ultrahard TiO2-cotunnite
with H = 38 GPa is thus an artifact; our model gives H = 15.3
GPa for it, see Table I. In this structure, each Ti atom has nine
bonds with O atoms, their lengths ranging from 2.03 to 2.56 Å
(with electron-holding energy from 0.43 to 0.02, respectively).
Ionicity indicator from Eq. (2) is in the range 0.31–0.38. One
can see from Eqs. (2) and (3) that the relatively low hardness
of TiO2-cotunnite is caused by the high coordination number
and relatively high ionicity. Also, theoretical calculations35

suggest that this structure is dynamically unstable at 1 atm,
and careful measurements of the equation of state36,37 showed
that Dubrovinsky’s measurements21 overestimated the bulk
modulus by about 40%. Therefore the experimental data21

need to be reconsidered. The hardest chemically feasible TiO2

structures with 12 atoms in the unit cell obtained by us can
be divided into three groups: (i) structures related to rutile
(H ∼ 14 GPa); (ii) structures related to Pca21 orthorhombic
structure (7–9% denser than rutile with energies about 0.03–
0.08 eV/atom higher); and (iii) structures related to the Pnma
orthorhombic structure with H = 15.7 GPa, depicted in Fig. 3

FIG. 2. Predicted superhard
carbon allotropes. (a) M-carbon,
(b) bct4-carbon and (c) Cmcm-16
structure.
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Details of some low-energy hard TiO2 structures can be found
in the supplementary material.28

We have also done preliminary calculations for C3N4, a
material some structures of which were predicted to be less
compressible38,39 and potentially harder than diamond. None
of the structures that we have sampled are harder than diamond,
but those structures proposed in Ref. 40 come close to diamond
in hardness. Cubic C3N4 has theoretical hardness H = 86.9
GPa, pseudocubic C3N4 has H = 84.6 GPa, and β-C3N4 has
H = 79.9 GPa; these numbers are consistent with Ref. 4. Our
global searches did not indicate any structures of C3N4 with
hardnesses above 87 GPa. Thorough variable-composition
runs in the C-N system, looking for the hardest material in
this system, have also arrived at pure carbon in the diamond
structure.

In summary, we proposed an improved empirical model
to predict the hardness of materials based only on their
crystal structure. Merged with evolutionary crystal structure
prediction algorithm USPEX, it provides a way of systematic
discovery of new hard materials. Our results show that
diamond is the hardest carbon allotrope and that all possible

TiO2 polymorphs are relatively soft (H < 17 GPa). Thus
TiO2 cannot be considered as one of the hardest oxides,
resolving a longstanding controversy. We have found several
sp3-allotropes of carbon with very high hardnesses, simple
structures, and reasonably low energies. These may be syn-
thesizable. The same concept of hybrid global optimization
as used here for hardness, can be used for optimizing other
properties of materials, and in near future will become the
basis of computational materials discovery and design.
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